skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kurosawa, Emmi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background and AimsFreshwater nitrogen inputs are increasing globally, altering the structure and function of wetland ecosystems adapted to low nutrient conditions. Carnivorous wetland plants of the genus Utricularia are hypothesized to reduce their reliance on carnivory and increase their assimilation of environmental nutrients when the supply of ambient nutrients increases. Despite success in using stable isotope approaches to quantify carnivory of terrestrial carnivorous plants, quantifying carnivory of aquatic Utricularia requires improvement. MethodsWe developed stable isotope mixing models to quantify aquatic plant carnivory and used these models to measure dietary changes of three Utricularia species, Utricularia australis, U. gibba and U. uliginosa, in 11 wetlands across a 794-km gradient in eastern Australia. Diet was assessed using multiple models that compared variations in the natural-abundance nitrogen isotope composition (δ15N) of Utricularia spp. with that of non-carnivorous plants, and environmental and carnivorous nitrogen sources. Key ResultsCarnivory supplied 40–100 % of plant nitrogen. The lowest carnivory rates coincided with the highest availability of ammonium and dissolved organic carbon. ConclusionsOur findings suggest that Utricularia populations may adapt to high nutrient environments by shifting away from energetically costly carnivory. This has implications for species conservation as anthropogenic impacts continue to affect global wetland ecosystems. 
    more » « less